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The sections below describe in more detail the content that could be covered on each 
of the learning topics and sub-topics listed above, with an emphasis on data 
interpretation and applications, and with references to case studies. 

Interpretation of genomic QC metrics 
Genomic quality metrics are computed at different stages of the sequencing and 
genome analysis pipeline: raw sequence data, read alignment, variant calling and de 
novo assembly (Table 2). QC metrics are applied to both controls and clinical isolates 
being sequenced in the same sequencing run to make sure the laboratory processes 
of DNA extraction, library preparation and sequencing reactions yield sequence data 
of enough quality for downstream applications. 
 
Thresholds for quality metrics should be set beforehand. Technical evaluations of 
laboratory and whole-genome sequence analysis pipelines have defined key quality 
metrics and set thresholds for these, either as a single value or a range of values.8 
Other studies9,10 have defined “warning” and “failure” thresholds by selecting a more 
and less stringent value for metrics exhibiting less and more variation between 
samples, respectively. 
 
 

 
Figure 1 Distribution of genome assembly lengths for Illumina sequenced isolates of different bacterial 

organisms11 

As these validation studies have shown,8,10,11 QC thresholds are often organism 
specific, not surprisingly considering that the size and repetitive structure of each 
microbial genome will determine the value of metrics such as expected assembly 
length (Figure 1), mean read coverage or number of contigs (Figure 2). 
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The whole-genome analysis pipeline used will also influence the exact values of 
QC thresholds. Recent studies have assessed the effect of different SNP calling 
pipelines12 and key bioinformatic parameters affecting genetic distance calculations.13 
 
 
 

 
Figure 2 Mean coverage vs number of contigs for lengths for Illumina sequenced isolates of different 

bacterial organisms 11 

In addition to indicating the quality of individual isolate genomes, QC metrics are also 
used to measure the performance of each end-to-end sequencing process in terms 
accuracy, precision, reproducibility, and repeatability.1410 Repeatability is a measure 
of within-run precision while reproducibility a measure of between-run precision. 
 
Table 2 Evaluated performance metrics and their corresponding definitions and formulas 9 

Metric Definition Formula Assay-specific 
definitions 

Accuracy The likelihood that 
results of the assay 
are correct 

Accuracy = 100% × (TP + TN)/(TN + 
FN + TP + FP) 

True-positive 
result (TP) 

Precision The likelihood that 
detected results of the 
assay are truly 
present 

Precision = 100% × TP/(TP + FP) False-negative 
result (FN) 

Repeatability Agreement of the 
assay based on intra-
assay replicates 

Repeatability = 100% × (no. of intra-
assay replicates in agreement)/(total 
no. of intra-assay replicates) 

Intra-assay 
replicate 
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Reproducibility Agreement of the 
assay based on inter-
assay replicates 

Reproducibility = 100% × (no. inter-
assay replicates in agreement)/(total 
no. inter-assay replicates) 

Inter-assay 
replicate 

 
The QC metrics of positive and negative control sequenced along with clinical strains 
in the same sequencing run is also encouraged to assess the quality of individual runs. 
A recent study8 included a clinical strain of the target sequenced organism (MRSA) as 
a positive control to control for the accuracy of base calling by the sequencer; a strain 
of a non-target organism (Escherichia coli NCTC12241) as a negative control to 
ensure lack of cross-contamination and absence of target genetic markers (S. aureus 
sequence type and mec gene); and a no-template (water) control (Figure 3). More 
importantly, the positive control was used to control for base calling accuracy by the 
sequencer, and used multiple repeat sequences of the control to define a permitted 
range of SNPs different to the mapping reference for this control (equating to 3 
standard deviations from the mean). 
 

 
Figure 3 QC flowchart for passing/failing controls and clinical isolates during clinical MRSA 

sequencing 8 

Detecting contamination with different strains of the same species or species 
different from the target organism is another important purpose of QC of genomic data. 
Sequencing directly from clinical plates, even when targeting individual colonies for 
sequencing, runs an increased risk of contamination as more than one strain or a 
growing plate contaminant could be inadvertently sequenced. Introduction of 
contaminants can occur at many stages in the generation of bacterial sequence data. 
For example, cross-contamination can also occur during preparation of genomic DNA 
or sequencing-libraries.15 
 
Heterozygous sites detected after read mapping and variant calling are an important 
metric of same-species contamination when sequencing haploid microbial genomes. 
Sequencing a mixture of different strains of the same haploid organism will result in 
the chromosome sites differing between strains being called as heterozygous alleles 
instead of homozygous alleles. A recent study8 observed that the majority of 
heterozygous SNPs in sequenced clinical strains of MRSA clustered together within 
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particular ‘hot-spot’ locations, putatively attributable to homolog/repetitive sequences. 
In the pure isolates (0 % contamination) sequenced, the majority of heterozygous 
SNPs were found to be <50 bp apart and therefore only heterozygous SNPs more than 
>50 bp apart were considered when estimating the proportion of same-species 
contamination. A cut-off of non-clustered heterozygous SNPs was also established to 
differentiate contaminated runs (Figure 3). 
 
Not accounting heterozygous SNPs can lead to erroneously high relatedness in the 
event that bases at heterozygous positions are excluded when calculating pairwise 
SNP distances, which is standard practice. It has also been showed that within-
species contamination causes errors that confound clustering analyses, while 
between-species contamination generally does not.16 
 
Different-species contamination can be detected using taxonomic classifiers like 
Kraken17, originally designed for metagenomic studies; or tools like ConFinder18 which 
are based in the detection of alleles in ribosomal MLST genes. It has been shown that 
different-species contaminant DNA is a major source of false genetic variability in 
bacterial sequencing experiments.19 

Interpretation of speciation and strain typing results 
 
Knowing the identity of the pathogen causing any infection allows clinicians to identify 
appropriate treatment (e.g. to give antibiotics for a bacterial respiratory infection but 
avoid giving them for a viral infection) and to determine any infection control measures 
that may be required to prevent its spread. 
 
Unbiased whole-genome sequencing directly from the patient’s clinical specimen has 
been proposed to detect the cause of an infection (diagnostic metagenomics). The 
field of diagnostic metagenomics is still emerging. The results of proof-of-concept 
studies20 using Oxford nanopore sequencing are promising.21–23 
 
If identification of the infection-causing pathogens can be made directly from the 
culture using phenotypic methods, there is little obvious additional clinical utility in 
sequencing the genome of the causative agent. Nonetheless, when target pathogens 
are sequenced for other applications (e.g. outbreak investigation, detection of AMR), 
speciation from genomic data is used to confirm the identity of the target organism 
and inform QC. 
 
A quick and accurate method to confirm the identify of bacterial species is ribosomal 
MLST nucleotide identity (rMLST-NI).24 Ribosomal MLST (rMLST) is a universal, 
bacterial domain-wide approach that indexes the protein-encoding genes of the 
ribosome and has been shown to reconstruct phylogenetic and taxonomic groups 
accurately. rMLST profiles are defined based on the numeric allelic indices of the 53 
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rMLST loci. The rMLST nucleotide identity of the sequenced genome can be 
calculated against the rMLST profiles of bacterial species available to date to identify 
the closest match and determine their species, similar to how sequence types (STs) 
are assigned using MLST loci. rMLST-NI results were found to agree with those 
obtained by whole-genome average nucleotide identity methods (OrthoANIu and 
FastANI).24 

 
Figure 4 rMLST nucleotide identity webserver results for scanning UCI 27 (NCBI Assembly entry 

GCA_000534255.1, Klebsiella aerogenes) 

Taxonomic classifiers based on 16S rRNA-based species identification and Kraken, 
the latter based on scanning kmers of the sequenced genome against databases of 
complete microbial genomes, are also commonly used. Another approach consists in 
the detection of specific genetic markers (genes, deletions, SNPs) that are known to 
be specific of the target pathogen. For example, SNPs specific to all subspecies of the 
Mycobacterium tuberculosis complex (MTBC) have been identified and used for typing 
purposes.25 
 
At the strain level, high-resolution strain typing methods based on core-genome and 
whole-genome MLST have been developed for multiple bacterial species. For clonal 
pathogens like Mycobacterium tuberculosis complex26,27 
(https://github.com/jodyphelan/TBProfiler) and Salmonella enterica serovar Typhi28 
(https://github.com/katholt/genotyphi , genotyping schemes based on the detection of 
lineage and sub-lineage specific SNPs have also been developed. The detection of 
SNPs specific of multiple lineages or sub-lineages can also point to identify cases of 
mixed infections. 

 

 
 
 
 

https://github.com/jodyphelan/TBProfiler
https://github.com/katholt/genotyphi
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How to interpret phylogenetic trees in the context of genomic 
epidemiology 
 
What are phylogenetic trees and how are they reconstructed? 
 
Before teaching how phylogenetic trees are interpret for infectious diseases (ID) 
epidemiology, it is important that the basic concepts of phylogenetics are introduced, 
including nomenclature and assumptions of phylogenetic tree reconstructions. 

A phylogenetic tree depicts estimated evolutionary relationships between taxa - these 
can be species, strains or even genes. In the context of ID epidemiology, phylogenetic 
trees are commonly used to define evolutionary relationships between clinical strains 
of the same microbial species. 

Phylogenetic trees are reconstructed based on the assumption that microbes 
reproduce clonally (although this assumption does not always holds true). During 
clonal reproduction, microbial progenitor cells replicate their DNA at high fidelity. 
Despite this, random errors in DNA replication may still occur, resulting in a clonal 
progeny that will inherit these genetic replication ‘errors’ (i.e. mutations) in their DNA 
and may not be strictly identical to their progenitor cells. Microbial strains that have 
recently originated from the same progenitor cell are thus expected to share identical 
genomes, or have diverged at most by only a few genetic differences. The number 
and pattern of shared mutations between strains can be used to reconstruct their 
genealogical and evolutionary relationships. 

Next, it’s important to introduce phylogenetic nomenclature, as terms like “clade”, 
“tips”, “topology” or “branches” are commonly used in the field of ID genomic. In short: 
isolated microbial strains are depicted on the tips (or leaves) of the tree (i.e. taxa), 
whereas the internal nodes of the tree denote their hypothetical ancestors. Nodes and 
taxa are connected by branches, the length of which represent genetic distances 
between connected groups. Groups of strains (taxa) that share the same common 
ancestor form a monophyletic group (also known as clade). A group of strains that 
descends from a common ancestor, but does not include all descendants, is called 
paraphyletic. 

There are multiple online resources on how to read phylogenetic trees that 
introduce these phylogenetic concepts and nomenclature including. The EBI course 
on phylogenetics, for example, places an emphasis on how to read and interpret 
phylogenetic trees (https://www.ebi.ac.uk/training/online/courses/introduction-to-
phylogenetics/). The US CDC course module “How to read a phylogenetic tree”, 
describes the anatomy of phylogenetic trees and how to interpret them in the context 
of transmission (https://www.cdc.gov/amd/training/covid-toolkit/module1-3.html). 

https://www.ebi.ac.uk/training/online/courses/introduction-to-phylogenetics/
https://www.ebi.ac.uk/training/online/courses/introduction-to-phylogenetics/
https://www.cdc.gov/amd/training/covid-toolkit/module1-3.html
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How are phylogenetic trees interpreted in ID epidemiological investigations? 

Appendix 1 of this document includes an example of exercises on how to interpret 
phylogenetic trees, with a particular focus on extracting strain relatedness 
information. Reading phylogenetic trees correctly may be relatively straightforward for 
an expert user, but should not be taken for granted. 

A powerful approach to teach learners these concepts would be to take them through 
the variety of proof-of-concept and case studies that applied genomic epidemiology 
and phylogenetic trees to investigate microbial transmission. There are multiple key 
studies captured by governmental agencies, reports and literature reviews that can be 
used to develop teaching materials on this topic. 

The U.S. Food & Drug Administration (FDA) federal agency coordinates a network of 
laboratories (GenomeTrakr network) that make use of whole-genome sequencing 
for pathogen identification and outbreak detection of foodborne pathogens 
(https://www.fda.gov/food/whole-genome-sequencing-wgs-program/examples-how-
fda-has-used-whole-genome-sequencing-foodborne-pathogens-regulatory-
purposes). This website includes multiple case studies on the use of genomic 
epidemiology to identify and understand the source of foodborne outbreaks: 

• to determine which illnesses are part of an outbreak and which are not; 
• to determine which ingredient in a multi-ingredient food is responsible for an 

outbreak; 
• to identify geographic regions from which a contaminated ingredient may have 

originated; 
• to differentiate sources of contamination, even within the same outbreak; 
• to link illnesses to a processing facility even before the food product vector has 

been identified; 
• to link small numbers of illnesses that otherwise might not have been identified 

as common outbreak; 
• and to identify unlikely routes of contamination. 

As an example, Figure 5 includes 35 genomes of Salmonella enterica collected as 
part of an investigation of a major salmonellosis outbreak associated with a meat 
processing facility in New England, US. The phylogenetic analysis of WGS data, from 
S. enterica strains isolated from ingredient suppliers, patients who consumed finished 
products, and historically and geographically disparate food sources, revealed a 
recent and common origin for outbreak strains from the implicated food facility (clades 
E and F in Figure 5). Case studies like this one can be used to exemplify the use of 
phylogenetics in the investigation of food-borne outbreaks, the expected clustering in 
tight phylogenetic clades of outbreak cases, and the conclusions that can be derived 
from. 

https://www.fda.gov/food/whole-genome-sequencing-wgs-program/examples-how-fda-has-used-whole-genome-sequencing-foodborne-pathogens-regulatory-purposes
https://www.fda.gov/food/whole-genome-sequencing-wgs-program/examples-how-fda-has-used-whole-genome-sequencing-foodborne-pathogens-regulatory-purposes
https://www.fda.gov/food/whole-genome-sequencing-wgs-program/examples-how-fda-has-used-whole-genome-sequencing-foodborne-pathogens-regulatory-purposes
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Figure 5 Outbreak Strains of Salmonella enterica Subtype Montevideo 

Other case studies on the use of phylogenetics to investigate foodborne bacterial 
outbreaks can be extracted from this review.29 For example, an investigation into the 
source of Listeria monocytogenes contaminating products in an ice cream firm 
(Producer) confirmed that the L. monocytogenes strain arose from a reservoir 
population in a supplier’s facility, rather than in the Producer’s facility. This type of 
source attribution investigations show how the phylogenetic tree should be 
interpreted: the genetic diversity of the contaminating strain (i.e. source) encloses 
within the same phylogenetic clade the diversity of the strain’s contaminated product.  
 

 
Figure 6 Phylogenetic analysis of genome sequences obtained from Listeria monocytogenes isolated 

from 2016 ice cream samples and the environment of a supplier. 

Public Health England’s 2018 report on “Implementing pathogen genomics” 
(https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attach
ment_data/file/731057/implementing_pathogen_genomics_a_case_study.pdf) 
includes another three case studies that can be used. 
 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/731057/implementing_pathogen_genomics_a_case_study.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/731057/implementing_pathogen_genomics_a_case_study.pdf
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There are also multiple early proof-of-concept and recent studies on the application of 
phylogenetics to investigate hospital outbreaks. 
 
For example, an early proof-of-concept study demonstrated that sequencing 
methicillin-resistant Staphylococcus aureus (MRSA) isolates from a suspected 
outbreak in a special care baby unit (SCBU) could link previously unsuspected cases 
(with no apparent epidemiological links and different antibiograms) to the same 
outbreak, identify the source of the outbreak (a health-care worker) and inform the 
infection control actions that brought the outbreak to a close. From an interpretation 
point of view it is important to note that the MRSA genomes of the health-care staff 
(i.e. the source of the outbreak) formed a cloud of diversity in the phylogenetic tree 
that enclosed the rest of outbreak isolates from infants, with close genetic matches 
(as shown by short branches and small SNP distances) to isolates from infants, and 
with two colonies clustering closer towards the root of the tree (Figure 7). All these 
phylogenetic observations are a clear indication of the health-care staff being the 
source of the outbreak. 

 
Figure 7 Phylogeny of the MRSA SCBU outbreak 

WGS has also been used for source tracking in hospital settings to demonstrate 
the detection of transmission events from hospital water. In a burns care ward and 
critical care ward in the UK, investigators found that Pseudomonas aeruginosa 
infecting burns patients clearly originated from hospital water sources.30 In the 
phylogenetic tree, two of the three patients investigated (patient 1 and 4) fell within the 
cluster originating from shower water, indicating that shower hydrotherapy was the 
most likely source of infection. 
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Figure 8 Phylogenetic tree of P. aeruginosa clinical and environmental isolates from 30 

Genomic epidemiology has also been applied to study the transmission of 
pathogens in the community, being Mycobacterium tuberculosis one of the best 
exemplar pathogens. Genomic epidemiology studies have provided valuable insights 
into the phylo-geography of Mycobacterium tuberculosis complex (MTBC), its 
evolutionary pathways and population and nosocomial transmission helping to 
distinguish between reinfection and re-activation and detect laboratory cross-
contamination. Contact tracing complemented with MTBC genotyping is considered 
an important means of understanding person-to-person transmission. Multiple 
literature reviews31–33 summarise case studies on the use of genomic epidemiology 
and phylogenetics applied to the study of Mycobacterium tuberculosis. 
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Visualisation of genomic and epidemiological data 
 
Visualisation and annotation of phylogenetic trees with epidemiological data (e.g. 
patient identifier, collection time, location, etc.) are a simple and powerful approach to 
intuitively and visually investigate outbreaks. 
 
Web-based tools like iTOL (https://itol.embl.de/) can be used to visualise phylogenetic 
trees along with annotations of epidemiological data, as shown in Figure 9 , taken from 
a study investigating an outbreak of multidrug-resistant tuberculosis (MDR-TB) in 
Denmark.34 Basic epidemiological metadata (such as host ids, region of birth, and drug 
susceptibility labels) annotated on top of the topological information of the tree, allows 
to visually identify and confirm suspected outbreaks.  

 
Figure 9 Phylogenetic tree and metadata of an MDR-TB outbreak strain in Denmark and contextual 

strains plotted using iTol 

More specialised tools such as Microreact (https://microreact.org/) or Nextstrain 
(https://nextstrain.org/) include purpose-built functionality for genomic epidemiology 
investigations. 
 
Beyond local outbreak investigations, Microreact can be used to visualise the temporal 
and geographical distribution and evolution of entire pathogen populations. A recent 
example of that is the use of Microreact to investigate the epidemiology of SARS-
CoV-2 in the UK using viral genome sequences. Labelling viral variants on the 
phylogenetic tree, maps and timelines allow to detect what variants are largely 
responsible for the rise in cases at a particular time. 
 

https://itol.embl.de/
https://microreact.org/
https://nextstrain.org/
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Figure 10 Visualisation of SARS-CoV-2 genome data in the UK from Microreact 

In the investigation of hospital outbreaks, the use of timeline plots showing 
patients’ stays in individual hospital wards and departments, along with phylogenetic 
information, has been commonly used to visually identify the source, in terms of 
hospital locations or host spreaders, of nosocomial outbreaks. 
 
As an example, the phylogenetic trees and timeline plots of the MRSA clones detected 
in two different hospital intensive care units (ICUs) in Thailand allowed the 
investigators to identify one patient on each ICU (T12 and T126, Figure 11) as the 
source of most transmission events (super-spreader). 
 

 
Figure 11 Dynamics of MRSA clones on a paediatric (left) and adult (right) ICUs in Thailand 
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A timeline of spatiotemporal movements and overlaps of patients for specific 
transmission clusters (outbreak clones) can help identify the hospital wards where the 
outbreak originated and how it may have spread to other wards. In this type of plots, 
each row represents the hospital admission period(s), coloured boxes patient visits to 
hospital wards (or rooms, departments, etc.) and symbols (e.g. circles) sample 
collection dates. Figure 12 shows an exemplar of transmission cluster of an 
Enterococcus faecium clone spanning two hematology wards and involving 7 patients. 
Strong genetic (SNP distances below 6 SNPs) and epidemiological links (stays in the 
same ward at the same time) point to transmission of this clone in room A3 (coloured 
in orange) among four patients (C015, C023, C009 and D021), followed by spread of 
this clone in different rooms of ward B among another four patients (D021, D022, D010 
and D045). 
 

 
Figure 12 Exemplar of nosocomial transmission of an E. faecium clone in two hematology wards 
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How genetic relatedness thresholds are applied and interpreted 
 
The detection of pathogen transmission is informed by the determination and 
interpretation of genetic distances from microbial genomic data. The simplest way to 
establish genetic relatedness between microbial strains is to count the number of 
nucleotide differences (i.e. the number of single-nucleotide polymorphisms [SNPs]) 
between their whole or core-genome sequences. The SNP cut-off approach places 
two individuals in the same putative transmission cluster (i.e. outbreak) if the genetic 
relatedness of their microbial isolates is below a pre-defined number of SNPs. 
 
Common approaches to determine SNP cut-offs are based on the maximum within-
host diversity observed (assuming that that’s the maximum pre-existing diversity that 
could be transmitted from the source to a recipient) or the distribution of genetic 
distances between strains from cases with confirmed epidemiological links. 
 
Genetic relatedness thresholds have been proposed above which recent microbial 
transmission (ideally defined within a specific time frame) can be ruled out, while 
distances below indicate probable transmission. It is increasingly acknowledged that 
epidemiological follow-up (i.e. detection of common epidemiological links) is needed 
to confirm definite transmission. 
 
SNP cut-offs are a simple and intuitive measure of genetic relatedness that can be 
interpreted by non-expert users in a clinical setting. Limitations of the SNP cut-off 
approach include that the likelihood of direct transmission below the cut-off cannot be 
inferred, and the directionally (i.e. who infection whom) cannot be determined either. 
Others warn that differences is local epidemiology, e.g. the presence of recently 
expanded and predominant circulating clones, can lead to the majority of cases being 
genetically linked below a SNP cut-off. In any case, the identification of common 
epidemiological links (such as visits to the same hospital ward, unit, or clinic, shared 
residential postcodes, or management by the same health-care worker) are still 
essential to confirm definite transmission, identify the place/host of transmission and 
direct infection control interventions. 
 
SNP cut-offs have been reported for MRSA35, M. tuberculosis31 and K. pneumoniae36, 
and foodborne pathogens29 (not an exhaustive list). 
 
For M. tuberculosis, studies conducted in 2013 to 2017 demonstrated that genetic 
distances between strains from patients with confirmed epidemiological links were 
generally within the range of 0 to 5 SNPs. Based on the mutation rate and 
epidemiological observations, a cut-off value of fewer than six SNPs has been 
proposed to indicate recent transmission, defined as transmission that has occurred 
in the last 3 years; while strains being >12 SNPs apart were not considered involved 
in direct transmission.31 
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Similarly related to SNP cut-offs, core-genome and whole-genome MLST schemes 
can also be used to detect microbial transmission, in addition to their use as typing 
schemes, provided that the number of allele differences compatible with probable 
transmission are known (effectively a SNP cut-off too).  
 
Hierarchical SNP relatedness approaches (effectively the application of SNP cut-offs 
at different relatedness levels) has also been described. SnapperDB was developed 
by Public Health England (PHE, now UKHSA) to quantify SNP relatedness and derive 
an isolate level nomenclature termed the “SNP Address”. This applies multi-threshold 
SNP typing to describe an isolate's relatedness (allele profile, SNP address) in relation 
to a population of previously typed strains. Clustering is performed at seven 
descending thresholds of SNP distance; 250, 100, 50, 25, 10, 5, and 0. This clustering 
results in a seven-digit code where each number represents the cluster membership 
at each descending SNP distance threshold. Instead of applying a single SNP cut-off 
to rule in or out probable transmission, this approach allows for a directed and 
hierarchical investigation of genetically related cases. 
 

 
Figure 13  
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How to interpret genotypic predictions of antibiotic resistance 
from microbial genomes 
 
Early proof-of-concept studies 
 
Antibiotic resistance in bacteria is mediated by the acquisition of new genes or genetic 
variants in existing regions of the core or accessory genome that enable the organism 
to avoid the toxic effects of the drug. Multiple proof-of-concept studies demonstrated 
that, in principle, it is possible to use WGS to detect genes and genomic variants that 
are known to cause antibiotic resistance.  
 
For Staphylococcus aureus,1 an early study showed that genotype-based antibiotic-
resistance prediction was comparable to that obtained by gold-standard phenotypic 
methods, with a sensitivity and specificity of 99.1% and 99.6%, respectively, across 
12 antibiotics. 
 
For Mycobacterium tuberculosis, the application of WGS to determine drug resistance 
has been particularly attractive, given the slow-growing rate of this bacterium and long 
turnaround times of phenotypic methods to yield susceptibility results. In an early 
proof-of-concept study,2 the authors used WGS to investigate the case of a patient 
with extensively drug-resistant (XDR) tuberculosis. The reference laboratory had 
reported resistance to nine antibiotics, and the authors detected mutations that were 
consistent with resistance to these nine drugs. They concluded that whole-genome 
sequencing had the potential to diagnose drug resistance in M. tuberculosis within 
weeks to days. 
 
A retrospective WGS study on Escherichia coli and Klebsiella pneumoniae isolates 
demonstrated that WGS was as sensitive and as specific as currently used phenotypic 
methods at predicting antimicrobial sensitivity.3 
 
Available approaches, databases and tools 

The most common approach to predict antibiotic resistance from genome sequences 
is the look-up table or rule-based approach, wherein the genome is scanned for the 
presence of genetic markers encoded in a database of antibiotic resistance (ABR) 
determinants. The absence of any known antibiotic resistance determinant is 
interpreted as susceptibility to that specific antibiotic.  ABR determinants are genetic 
markers such as single acquired genes, multiple acquired genes (e.g. operons), 
individual mutations or multiple mutations in the same or different genes. The latter 
two include amino acid changes in protein-coding genes, nucleotide changes in RNA-
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coding genes or promoter mutations. The creation and maintenance of these 
databases require an continuous expert curation. 
 
This approach requires a comprehensive knowledge of the genetic basis of resistance 
for each target antibiotic in the target microbial organism. This is generally not the case 
for recently licensed or last-line antibiotics, for which not all resistance mechanisms 
are characterised. It is increasingly acknowledged that ABR genetic determinants 
must be applied to determine resistance to individual antibiotics (as opposed to entire 
antibiotic classes) and for individual microbial species. 
 
Machine learning techniques have also been explored to predict phenotypic resistance 
from whole-genome sequence data,37,38 although they seem to perform on par with 
look-up table approaches, while not always providing an intuitive interpretation of ABR 
predictions. Methods to infer ABR phenotypes from bacterial genomes by closest 
genomic match, that is, by identifying its closest relatives in a database of genomes 
with ABR metadata, have also been proposed.39 
 
Tools like AMRFinder,4 CARD Resistance Gene Identifier (RGI),5 ResFinder,6 or 
Pathogenwatch (https://pathogen.watch/) are among the most commonly used 
bioinformatic tools to determine ABR, which also host underlaying curated databases 
of ABR genetic markers needed to make these predictions. Pathogenwatch is one of 
most intuitive an easy-to-use web-based platforms for the analysis of bacterial 
genomes, developed by The Centre for Genomic Pathogen Surveillance (CGPS), UK, 
that can be used to detect AMR in the genomes of many microbial pathogens. Pre-
generated genome assemblies can be directly uploaded as input to this tool. Once 
uploaded, Pathogenwatch performs strain identification, multi-locus sequence typing 
(MLST) and resistance prediction in an automated manner. Recently, the website was 
upgraded with the option to upload raw sequencing reads, those obtained directly from 
sequencing machines without further bioinformatic processing. 

 
Figure 14 Pathogenwatch genome report of an MRSA strain 

https://pathogen.watch/
https://www.pathogensurveillance.net/about-us/
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For well-studied organisms, like M. tuberculosis, there are organism-specific tools like 
MTBseq40, Mykrobe41 and TB-Profiler.42 
 
Assessing the diagnostic accuracy of genotypic determinations with 
population-based studies 

While many publicly available bioinformatics tools have been developed to determine 
ABR genotypically from whole-genome sequences, based on different curated ABR 
databases, the quality and diagnostic accuracy of genotypic predictions compared to 
phenotypic antibiotic susceptibility testing (AST) results cannot be taken for granted. 
As stated before, the accuracy of genotypic predictions should be assessed for 
individual antibiotics and bacterial species. 

Large and diverse collections of strains with available AST phenotypes and genome 
sequences are needed to assess the diagnostic performance of genotypic predictions. 
For binary determinations of ABR (i.e. resistance or non-susceptibility vs. 
susceptibility), the following diagnostic classifications are commonly used: 

• True positive: phenotypically resistant (or non-susceptible) strain with known 
resistance-conferring genetic determinant(s) detected in their genome. 

• True negative: phenotypically susceptible strain in the absence of any known 
genetic determinant. 

• False positive: phenotypically susceptible strain in the presence of a known 
genetic determinant. 

• False negative: phenotypically resistant (or non-susceptible) strain but not 
carrying known resistance-conferring genetic determinant(s) in their genome. 

The number of strains in each of these four categories are used to calculate metrics 
of diagnostic accuracy such as sensitivity, specificity, positive predictive value (PPV) 
and negative predictive value (NPV). As an example, Figure 15 shows the diagnostic 
accuracy, in terms of sensitivity and specificity, of WGS to predict phenotypic 
resistance to first-line drugs in M. tuberculosis. In this type of studies, a low sensitivity 
(i.e. high number of false negatives) should be interpreted as a large proportion of 
phenotypically resistant strains lacking known ABR genetic markers, in other words, 
resistance is under-called at the population level. On the other hand, a low specificity 
(caused by a big number of false positives), is indicative of a large number of 
phenotypically susceptible strains carrying ABR genetic markers, that is, resistance in 
over-called at the population level. In conclusion, when deciding which bioinformatic 
tool or database to use for ABR detection from whole-genome sequences is important 
to identify studies benchmarking these tools and providing metrics of diagnostic 
accuracy broken down for specific antibiotics and microbial species. 
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Limitations and sources of genotype-phenotype discrepancies 
 
For some pathogens and antimicrobials, the predictive sensitivity and specificity of 
WGS for inferring AMR phenotypes are still too low for practical application. When 
comparing the concordance between phenotypic and genotypic AMR it is essential to 
consider the reasons that errors may occur. Three broad reasons for systematic errors 
are:43 
    (a) Heteroresistance and an inadequate limit of detection of WGS. 
    (b) Flaws with phenotypic AST. 
    (c) Incomplete understanding of the genotypic basis of phenotypic resistance. 
 
Many bacterial species and antibiotic classes exhibit heteroresistance, a phenomenon 
in which a susceptible bacterial isolate harbours a resistant subpopulation that can 
grow in the presence of an antibiotic and cause treatment failure.44 A drug-susceptible 
(usually wildtype; WT) and drug-resistant (usually mutant) organisms can co-exist in 
the same clinical specimen which can result from the concurrent presence of two 
different strains (mixed infection) or from a changing bacterial subpopulation within the 
same strain (clonal evolution) (Figure 16).45 The capacity of phenotypic and genotypic 
assays to detect heteroresistance largely depends on the technique applied. 
Phenotypic antibiotic-susceptibility testing can determine whether 1% or more of the 
bacterial population is antibiotic resistant. Accordingly, genotypic assays should be 
able to detect the simultaneous presence of WT and mutant sub-populations of the 
relevant genes at different ratios. 
 
As a consequence, heteroresistance can be a source of false negatives if the limit 
of detection of WGS is lower than that of the phenotypic test, as it has been shown in 
M. tuberculosis46 and Salmonella enterica.47 The limit of detection of WGS is 

      

Figure 15 Diagnostic accuracy of WGS to predict phenotypic resistance to first-line drugs in M. tuberculosis 
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determined by the depth of sequencing coverage. A good example of the need for 
good quality sequence data (of high enough sequencing depth) is the finding that 
genotypic resistance sensitivity was 11% and 9% lower for isoniazid and rifampicin 
respectively, on isolates sequenced at low depth (<10× across 95% of the genome). 
 

 
Figure 16 Clonality of heteroresistance 

Another source of phenotype-genotype discrepancies is caused by the way antibiotic 
resistance is categorised into two categories (resistance vs. susceptible) from MIC 
distributions by applying an epidemiological cut-off or clinical breakpoint (Figure 17). 
 

 
Figure 17  Cefotaxime MIC distribution for Escherichia coli (n = 10,397 from 41 aggregated 

distributions). 
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For some drugs and organisms, it has been showed that the critical concentrations to 
distinguish between resistant (expected to carry genetic markers of resistance) and 
susceptible (expected to be wildtype) strains were originally set too high, leading to 
the detection of “phenotypically susceptible” strains with ABR markers (i.e. false 
positives, see example in Figure 18).48 

 
Figure 18 MIC distributions for rifampin, rifabutin, and isoniazid in M. tuberculosis 

Another source of false positives is the presence of silenced ABR genes. Literature 
reports describe isolates of bacteria that carry an ABR determinant but remain 
susceptible to the corresponding antibiotic as a consequence of a genetic defect. 
Despite initial phenotypic susceptibility, such strains represent a source from which 
antibiotic resistance may re-emerge to cause treatment failure in patients. The 
prevalence and nature of this phenomenon has been studied in Staphylococcus 
aureus. 
 
And finally, errors in phenotypic AST should not be ruled out as a source of 
phenotype-genotype discrepancies. For example, in a study evaluating ABR WGS-
based predictions for Salmonella compared with the results of traditional phenotyping 
assay, the authors found that where initial phenotypic results indicated isolates were 
sensitive, yet ARGs were detected, repeat phenotypic AST corrected discrepancies.49 
In another study evaluating an automated bioinformatics analysis tool to predict the 
phenotypic resistance of MRSA, the investigators found that following retesting of 
discrepant phenotype-genotype results, concordance between phenotypic results and 
genotypic predictions was 99.69% (Figure 18). 
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Figure 19 Algorithm used for retesting of phenotype-genotype discrepancies for MRSA ABR 

The detection of wrongly annotated ABR genetic markers (i.e. an error in curation) 
and the presence of an unknown/novel mechanism of resistance, should also be 
considered as potential sources of false positives and false negatives, respectively. 

Genomic reporting standards 
 
Understanding how to report complex genomic test results to stakeholders who may 
have varying familiarity with genomics - including clinicians, lab technicians, 
epidemiologists, and researchers - is critical to the successful and sustainable 
implementation of microbial genome sequencing in clinical and public health 
laboratories. A few research groups have worked on evidence-based guidelines for 
designing pathogen genomics reports. A good example of this is an evidence-based 
design and evaluation of a M. tuberculosis whole-genome sequencing clinical report 
for a reference microbiology laboratory (Figure 20).50 Another good is the sequence 
reporting tool developed to detect the infection source for hospital onset COVID-19 
infections (HOCIs). The SRT system for prospective use is designed to provide useful 
and appropriate feedback in both low-incidence and high-incidence settings for new 
HOCI cases. This is planned through the generation of a concise one-page PDF 
summary report for each focus sequence (Figure 21). This summary report contains 
key focus sequence metadata, information regarding the estimated probabilities for 
infection source and details of up to 10 close sequence matches identified within the 
same unit/ward and/or elsewhere in the hospital.51 



 
 

 
How to design and deliver pathogen genomics training for health 

and research professionals 
 

Module 3D: How to train - data interpretation and applications 
Developed by Francesc Coll 

24 

 

Figure 20 Improved design of a M. tuberculosis genomics report 
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Figure 21 Sequence reporting tool (SRT) for hospital onset COVID-19 infections (HOCIs) 
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Appendix 1: Exercises on interpreting phylogenetic trees  

Question 1. based on the tree above, what internal node corresponds to the most 
recent common ancestor of samples 8 and 10: 

• Node F 
• Node D 
• Sample 7 
• Node E 

Question 2. Based on the tree above, which group of samples are most closely 
related: 

• Samples 1 to 5 
• Samples 6 & 7 
• Samples 6 to 10 
• Samples 8 & 9 

Question 3. Based on the tree above, which of the following statements referring to 
sample 10 is more accurate: 

• Sample 10 is more closely related to sample 7 than to sample 8 
• Sample 10 is more closely related to sample 8 than to sample 7 
• Sample 10 is equally related to sample 7 and sample 8 
• Sample 10 is related to sample 8, but it is not related to sample 7 

 

Question 4. Based on the tree above, which of the following statements referring to 
sample 7 is more accurate: 
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• Sample 7 is more closely related to sample 8 than to sample 10 
• Sample 7 is more closely related to sample 10 than to sample 8 
• Sample 7 is equally related to sample 8 and sample 10 
• Sample 7 is related to sample 8, but it is not related to sample 10 

 

 
 

Question 5. Based on the country of origin of samples on the tree above, which of 
the following statements about transmission events is more certain: 

• The common ancestor of samples 6 to 10 (node D) most likely circulated in 
country A first and later on transmitted to country B and C 

• The common ancestor of samples 6 to 10 (node D) most likely circulated in 
country B first and later on transmitted to country C 

• The common ancestor of samples 6 to 10 (node D) most likely circulated in 
country C first and later on transmitted to country B 

• The common ancestor of samples 6 to 10 (node D) could have circulated in 
country A or B 

Question 6. Based on the country of origin of samples on the tree above, which of 
the following statements about transmission events is more certain: 

• The common ancestor of samples 1 to 10 (node A) most likely circulated in 
country A first and later on transmitted to country B and C 

• The common ancestor of samples 1 to 10 (node A) most likely circulated in 
country B first and later on transmitted to country A and C 

• The common ancestor of samples 1 to 10 (node A) most likely circulated in 
country C first and later on transmitted to country A and B 

• The common ancestor of samples 1 to 10 (node A) could have circulated in 
country A or B 
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